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Session 3: Corrections and Error Sources

* What corrections do we add to our basic range data?

* Where do they come from?

* How do we calibrate and get the most accurate data products?

* What are the error sources to our ranging data?

» Accurate timing: how do we get it? How good is it? Improvements?

» The importance of ground surveys and how do we do them

» Spacecraft centre of mass: modelling considerations and operational issues
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Session 3: Corrections
What do I mean by “corrections” here?

correction (o rekgen)

n
1. the act or process of correcting
2. something offered or substituted for an error; an improvement
3. the act or process of punishing; reproof
4. (Mathematics) a number or quantity added to or subtracted from a scientific or
mathematical calculation or observation to increase its accuracy

“ClTE“ &3 Collins English Dictionary — Complete and Unabridged, 12th Edition 2014 © HarperCallins
Publishers 1991, 1994, 1998, 2000, 2003, 2006, 2007, 2009, 2011, 2014
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What do I mean by “corrections” here?

correction (o rekgen)

n
1. the act or process of correcting
2. something offered or substituted for an error; an improvement

3. the act or process of punishing; reproof
4. (Mathematics) a number or quantity added to or subtracted from a scientific or

mathematical calculation or observation to increase its accuracy

“ClTE” &3 Collins English Dictionary — Complete and Unabridged, 12th Edition 2014 © HarperCallins
Publishers 1991, 1994, 1998, 2000, 2003, 2006, 2007, 2009, 2011, 2014

The basic corrections we are going to discuss serve the purpose of achieving the required accuracy
from the SLR technique...

They do not imply that the measurements themselves, at a technical level, are inaccurate
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Session 3: Corrections

To recap:

* SLR observations (NPs) —
» Orbit propagation and parameter estimation

The SLR observable is TOF, not distance
Time-of-flight is not what we need in the analysis stage:

We need to convert TOF to ranges, multiplying by the
speed of light + applying some corrections

Photo: M.Wilkinson

However accurate TOF measurements are, without corrections distances are off by metres
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Session 3: Corrections - tropospheric delay

Troposphere: lowest layer of Earth’s atmosphere
Geometric path length != Optical path length
OPL = geometric length x refractive index

Depends on pressure, temperature and composition, which
are heterogeneous and time variable

We compute appropriate corrections using models

Photo: NASA
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Session 3: Corrections - tropospheric delay

Normally the total delay at the zenith is computed,

followed by a projection to the angle of interest [REbisseen e 0
-~ mean
Currently we use the Mendes-Pavlis model (2004) S
* Zenith delay accuracy: sub-mm 515
* Mapping function: sub-cm g 10
:
Developed from ray-tracing computations, using satellite 2
observations of the atmosphere 0
90 75 60 45 30 15

elevation (deg)
Assumption: spherically symmetric atmosphere
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Session 3: Corrections - tropospheric delay

Test: orbit fit without applying any corrections
« Data: LAGEOS & LAGEOS-2 normal points from the global network (7 days)
* Only dynamic parameters estimated (satellite positions, force model)

» Quantity of interest: observed minus computed residuals
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Session 3: Corrections - tropospheric delay

Test: orbit fit without applying any corrections

No corrections
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» Very poor orbital fit (no better than several metres)
» Evident systematic signatures in histogram of residuals
» Possibly only good for orbit predictions, if at all
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Session 3: Corrections - tropospheric delay

Test: mean atmospheric delay

+ atmospheric delay: average
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» Massive improvement in orbit fit (one order of magnitude)
* No meteorological data employed, simple average delay applied
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Test: mean atmospheric delay

+ atmospheric delay: average
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» Massive improvement in orbit fit (one order of magnitude)

* No meteorological data employed, simple average delay applied

« But clearly not good enough: RMS = 22.0 cm; mean residual offset =-16.5 cm
 Distribution of residuals evidently non-Gaussian
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Session 3: Corrections - tropospheric delay

Tropospheric delay (532 nm)

—— MR

20
£
15
c 12.8 m @10 deg
@ 10
é 6.7 m @20 deg

S

0

90 Fis 60 45 30 15

elevation (deg)

© NERC All rights reserved
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Tropospheric delay (532 nm)
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Tropospheric delay (532 nm)
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Session 3: Corrections - tropospheric delay

Test: full model atmospheric delay

+ atmospheric delay: average
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Session 3: Corrections - tropospheric delay

Test: full model atmospheric delay

+ atmospheric delay: per observation & met data
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* Much better fit and distribution of residuals
e RMS =11.0 cm; residuals mean offset =-15.7 cm
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Session 3: Corrections - tropospheric delay

A curiosity?

» Tropospheric delay model contains a corrective factor
dependent on the concentration of atmospheric CO,

* Recommended value: 375 ppm

* Very small correction, will it ever matter?
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A curiosity?

» Tropospheric delay model contains a corrective factor
dependent on the concentration of atmospheric CO,

* Recommended value: 375 ppm
* Very small correction, will it ever matter?

CO2 concentration in 1976 : 330 ppm
2019:410 ppm

Total zenith delay @330 ppm : 2.447487 m
Total zenith delay @410 ppm : 2.447592 m
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Session 3: Corrections - tropospheric delay

A CU riOSity? ZZZ a Atmospheric CO, concentration i b Global mean surface air temperature
» Tropospheric delay model contains a corrective factor ml= T %J Brecciiie
dependent on the concentration of atmospheric CO,
* Recommended value: 375 ppm B
% jzz ¢ Atmospheric CO, concentration E:’. g| d Global mean surface air temperature
 Very small correction, will it ever matter? IR presmmmon E
« Delay @330@10 deg : 13.5812 m Y TR RS -

20
1850 1900 1950 2000 2050 2100 1850 1900 1950 2000 2050 2100

* Delay @410@10 deg: 13.5818 m (+ 0.6 mm)
Figure 12.36 | S'\mul\ated changes '\n. (al)atmospher'\(.CO2 concentration and (b) g\aba\. averaged surface Iemper.arure (f’C) as fa\(u\ared bythe CMIPS Earth System Models (lESMs)
° D e I ay @ 5 50@ ’l 0 d eg : 1 3 . 5828 m (+ 1 . 6 m m ) for the RCP8.5 scenario when €O, emissions are prescribed to the ESMs as external forcing (blue). Also shown (b, in red) is the simulated warming from the same ESMs when directly

forced by atmospheric CO, concentration (a, red white line). Panels (c) and (d) show the range of CO, concentrations and global average surface temperature change simulated by
the Model for the Assessment of Greenhouse Gas-Induced Climate Change 6 (MAGICCG6) simple climate model when emulating the CMIP3 models climate sensitivity range and the
Coupled Climate Carbon Cycle Model Intercomparison Project (C*MIP) models carbon cycle feedbacks. The default line in (c) is identical to the one in (a).

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University P
Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
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Session 3: Corrections and Error Sources

Summary

« SLR measures round trip time of flight between stations and optical reflection points of
retroreflector arrays in orbit, using light pulses that propagate through the atmosphere in the
near Earth environment

» Thus, we need to apply corrections to accurately derive distances from the measured TOF

» Tropospheric delays, centre of mass offsets, and relativistic delays are essential corrections
applied to SLR data to achieve mm-level accuracies

» CoM offsets are system-specific, and dependent on how they operate — ideally stations should
acquire data in a consistent way
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